Microarrays for Foodborne Virus Detection and Typing

Beatriz Quiñones, Ph.D.
Research Molecular Biologist
U.S. Department of Agriculture
Agricultural Research Service
Western Regional Research Center
Produce Safety and Microbiology Research Unit
Albany, California
Microarrays for Foodborne Virus Detection and Typing

1. Description of colorimetric method for pathogen detection with low-density DNA microarrays

2. Description of microarray design for genotyping noroviruses

3. Validation of microarray specificity
DNA Microarrays for Pathogen Detection

DNA Microarrays:
- Sequence-specific probes are uniformly attached to a glass surface

Microarray Detection Methods:

Fluorescent Assays- Enzymatic incorporation of fluorescent dye during DNA amplification
 - Direct labeling with Cy3/Cy5 nucleotides
 - Indirect labeling with aminoallyl-dUTP and fluorescent dye
 - Inconsistent incorporation of dye-label
 - Expensive non-portable microarray scanners

Colorimetric Assays- Use a streptavidin-conjugated substrate with biotin-labeled target on the microarray
 - Silver staining
 - Alkaline phosphatase
 - Unstable reagents requiring controlled temperatures
 - Variable development time leading to overexposure
Photopolymerization: A New Method for Microarray Detection

Photoinduced Signal Amplification (ampliPHOX®)

Microarray Hybridization
- Attach probe sequences to slides
- Add single stranded biotin (●)-labeled DNA target

Microarray Labeling
- Add streptavidin (●)-labeled photoinitiator (P)
- Add monomer mix

Signal Amplification
- Colorless polymer forms after irradiating at λ=532 nm

Polymer Staining

Cooperative Research Agreement
InDevR, Inc., Boulder, Colorado, USA
Overview of Photopolymerization

Biotin-labeled targets hybridized on microarray (30-60 min)

1) Incubate with streptavidin-conjugated photo-label, 5 min
2) Wash, 1-2 min

Labeled microarray

3) Add monomer mix
4) Photoactivate, ~1 min
5) Stain, ~2 min
6) Image, ~1 min

- Has been estimated to cost $5 USD per assay.
- Uses a small and portable scanner that is $4000 USD, 15× more cost-effective than fluorescence scanners.

InDevR's ampliPHOX Detection System

InDevR, Inc., Boulder, Colorado, USA
- Designed probes to have >90% sequence similarity to target strains
 <75% sequence similarity to excluded strains
 - region B: two different 25-mer probes for genogroup identification
 - region C: 25-mer probe (S) and 35-mer probe (L) for genogroup typing

- Targeted region C probes for typing of NoV strains commonly associated with foodborne illness
Sample preparation for microarray analysis

RNA Sample
↓
Reverse transcription-PCR using biotinylated and phosphorylated primers
Region B: Mon431/Mon432/Mon433/Mon434 primers (Anderson, et al., 2003 J Inf. Dis.)
Region C: G1SKF/G1SKR; G2SKF/G2SKR primers (Kojima, et al., 2002 J. Virol. Methods)
↓
PCR product purification
↓
Enzymatic digestion of dsDNA
↓
Sample hybridization to microarray
↓
Microarray labeling and signal amplification (ampliPHOX assay)
Genogroup I Detection (Region B)

- **Genogroup I Detection** (Region B)
- **Array layout**

- **Polymer formed** where the GI-region B probes were spotted on the array when testing RNA from NoV GI strains
Genogroup II Detection (Region B)

Average SNR values

Genogroup II strain

Detection Threshold (SNR=3)

Polymer formed where the GII-region B probes were spotted on the array when testing RNA from NoV GII strains
Genogroup I Typing (Region C)

Average SNR Value

- **Gl.2**
- **Gl.3A**
- **Gl.3B**
- **Gl.4**
- **Gl.6A**

Probes

Array layout

- **Detection Threshold (SNR=3)**

Patterns of polymer formation correlated with the genotype of the NoV GI strains

- **Gl.2**
- **Gl.3A**
- **Gl.3B**
- **Gl.4**
- **Gl.6A**
The shorter (25-mer) region C-probes detected most GII strain types.
Conclusions

- Use of photopolymerization (ampliPHOX colorimetric method) with low density microarrays enabled the detection of NoV genogroups (GI and GII).

- Shorter probes (25-mer) allowed a more accurate genotyping of norovirus strains.

Future Studies

- Re-design probes to improve detection of GII.4 strains, targeting region D [3’-end of capsid gene (ORF2)].

- Test using biotinylated dNTPs to increase array signal detection.
Acknowledgments

USDA
Western Reg. Res. Center
Produce Safety & Microbiol. Unit
Albany, California
Bertram Lee
Michelle Swimley
David Yang
Peng Tian
Robert Mandrell

CDC
Calicivirus Laboratory
National Center for Infectious Diseases
Atlanta, Georgia
Jan Vinjé
Everardo Vega
Nicole Gregorius
Sarah (Hannah) Shirley

InDevR, Inc.,
Boulder, Colorado
Erica Dawson
Amber Taylor